Outline

- 1. Brief history and current picture of displacement reactions
- 2. Neighboring group participation (halogens)
- 3. Salt effects and ion pairs
- 4. Role of the solvent

Key references

- "Ion pairing in nucleophilic substitution reactions." Eugene Kwan, April 2014
- "Medium effects on the rates and mechanisms of solvolytic reactions." Bentley, T.W.; Schleyer, P.v.R. Advances in Physical Organic Chemistry 1977, 14, 1-67
- "lons and ion pairs in solvolysis reactions". Raber, D.J.; Harris, J.M.; Schleyer, P.v.R. Advances in Physical Organic Chemistry. 1972, 2, 248-274.
- "Solvolytic displacement reactions." Streitweiser A. *Chem. Rev.* **1956**, *56*, 571

Winstein S. JACS series

"The role of neighboring groups in displacement reactions." "Correlation of solvolysis rates."

"Salt effects and ion pairs in solvolysis and related reactions."

This is a large field, this presentation will focus on mechanistic studies most relevant to dihalide solvolysis.

Key players

S. Winstein UCLA

A. Streitweiser Berkeley P. v. R. Schleyer (Princeton, Erlangen, Georgia)

Definition of solvolysis

First introduced by Steigman and Hammett for first-order nucleophilic displacements by solvent present in large excess. They also noted the "strange" tendency of rates: tertiary > secondary > primary.

Steigman, J. and Hammett, L. P. JACS 1937, 59, 2536

IUPAC definition. "Generally, reaction with a solvent, or with a lyonium ion or lyate ion involving the rupture of one or more bonds in the reacting solute. More specifically the term is used for substitution elimination and fragmentation reactions in which a solvent species is the nucleophile ('alcoholysis' if the solvent is an alcohol, etc.)."

Hughes-Ingold Scheme

The classical mechanism details two limiting mechanisms (S_N 1 and S_N 2).

According to *their* theory, sometimes a combination of these two processes is operational.

Unimolecular $(S_N 1)$

 $R-X \xrightarrow{k_1}_{k_1} R^{\oplus} + X^{\Theta} \xrightarrow{SOH}_{k_2} R-OS + HX$

first order overall if k_1 is rds

Bimolecular (S_N2)

The above model does not give the full picture, especially in the case of secondary substrates.

 S_N 2: Three possibilities: single-step, association-dissociation, contact ion-pair. These are indistinguishable by the rate law.

Winstein's modification to the S_N 1 mechanism involves contact ion pairs and solvent-separated ion pairs.

"It follows that, whatever detailed mechanisms might be associated with the terms $S_N 2$ and $S_N 1$, the vital difference between and $S_N 2$ and $S_N 1$ is not dependent on the extent to which the bond to the leaving group is broken but depends on whether or not nucleophilic attack occurs before the transition state in the rate-determining step."

Take home message

- $S_N 1$ and $S_N 2$ manifolds generally do not overlap.
- S_N1 reactions involve many differently dissociated ion pairs. Ionization is not always rate-determining.
- S_N2 reactions are often solvent-assisted.
- Secondary alkyl halides usually react through a concerted but asynchronous pathway.

Hughes and Ingold J. Chem. Soc. **1933**, 526 Bentley, T.W.; Schleyer, P.v.R. Advances in Physical Organic Chemistry. **1977**, 14, 1-67 Winstein JACS **1956**, 78, 328 J. Chem. Ed. **1972**, 49, 60; ibid. **2009**, 86, 519

Neighboring group participation

S. Winstein 20 papers in *JACS* 1942–1953. "The role of Neighboring Groups in Replacement Reactions."

1. Retention of configuration in the reaction of some dihalides and acetoxyhalides with silver acetate. *JACS* **1942**, 2781.

Optically active SM gives rise to inactive product due to the symmetrical nature of the cyclic intermediate.

2. The effects of small amounts of water on the reaction of silver acetate in acetic acid with some butane and cyclohexene derivatives. *JACS* **1942**, 2787.

Product is mostly inverted and some monoacetate can be isolated. Proposed mechanism:

3. Retention of configuration in the reaction of the 3-bromo-2butanols with phosphorus tribromide. *JACS* **1942**, 2791.

90% and 95% retention

4. The identity of various preparations of 1,2dibromocyclohexane. *JACS* **1942**, 2792.

Solvolysis in EtOH at 55 °C

Solvolysis in 80% EtOH at RT

<u>Conclusion</u>: "The neighboring group supplies a large driving force for the rate-determining ionization of the leaving group. This partly neutralizes or completely overbalances (as for I) the rate-retarding inductive effect."

10. "Kinetics of solvolysis of *trans*-2-acetoxycyclohexyl *p*-toluenesulfonate." *JACS* **1948**, 812.
First order kinetics in the presence of small amounts of water an/or acetate ion.
11. "Some reactivities involing neighboring groups." *JACS* **1948**, 816.
Cyclohexanol and butanol derivatives investigated (all first-order kinetics)
Based on relative rates:

- trans-OAc, trans-Br and I groups form a cyclic cation
- trans-Cl, cis-OAc probably form an open carbocation

REACTIVITY OF	VARIOUS ALCO	OHOLS TOWARD	HALOGEN								
Acids											
f [alf-life											
Compound	Solvent	ca. 20°	Rel. rate								
Cyclohexanol	Funning HBr	20 min.	1.0								
Cyclohexanol	48% HBr	7 days	1.0								
Cyclohexanol	Coned. HC1	12 days	1.0								
trans-2-Chlorocyclo-											
hexanol	Fuming HBr	85 days	1.6×10^{-4}								
trans-2-Bromocyclo-	,										
hexanol	Fuming HBr	4 hr.	0.08								
trans-2-Iodocyclo-											
hexanol	48% HBr	ca. 15 min.	700								
trans-2-Iodocyclo-											
hexanol	Coned. HCl	ca. 15 min.	1200								
2-Butanol	Fumine HBr	75 min	1.0								
2-Butanol	48% HBr	76 hr.	1.0								
three-3-Bromo-2-			•••								
butanol	Furning HBr	3 hr.	0.4								
Mixed 3-chloro-2-	Fuming HBr	No halide laver	3×10^{-44}								
butanols	- •	in 25 days									
<i>t</i> -Butyl alcohol	Coned. HC1	45 sec.									
^a Conservative estimate.											

12. "Rates of acetolysis of 2-substituted cyclohexyl benzenesulfonates" *JACS* **1948**, 821.

 Relative rates: trans-I (1120) > trans-OAc (0.305) > trans-Br (0.0718) > trans-OCH₃ (0.0528) > cis-OAc (1.31*10⁻⁴) > trans-CI (0.94*10⁻⁴) > cis-OBs (1.6*10⁻⁵) > trans-OBs (1.4*10⁻⁵)
 Variations are largely due to H

13. "General theory of neighboring groups and reactivity." *JACS* **1948,** 828. Summary of previous papers.

Salt effects and ion pairs

There can be ionic intermediates in both $S_N 1$ and $S_N 2$ reactions. Salt effects can play a role in both cases.

Common ion rate depression

The Hughes-Ingold scheme predicts that:

- Adding X⁻ would depress the rate of S_N1-type processes
- Rate would slow down as reaction progresses

Common ion exchange

If isotopically labelled MX is added, labelled RX should be possible to isolate.

- Anomalous case inconsistent with Hughes-Ingold scheme.
- Winstein suggests additional ion-pair species (contact and solvent-separated).

JACS **1956,** 78, 328

Normal salt effects

- Added salts increase the dielectric constant of the medium.
- This can lead to stabilization of charged intermediates.
- Overall rate acceleration is expected.

 $k = k_0 (1 + b [salt])$

- N.B. in organic solvents inorganic salts may be contact ion pairs.
- sqrt ([salt]) can give better correlation
- Difficult to predict and strongly dependent on several factors.

Winstein *JACS* **1956**, *78*, 2780

Special salt effects

- Often greater rate enhancemet at low salt concentration (suppression of ion-pair return).
- At higher salt concentrations system behaves like normal salt effects.

Winstein JACS, 1961, 83, 4986

"Ions and ion pairs in organic reactions." Raber, D.J.; Harris, J.M.; Schleyer, P.v.R. *Advances in Physical Organic Chemistry.* **1972**, 2, 248-274.

- Depression only occurs if free ions are formed appreciably and carbocation is relatively stable.
- Common ion exchange can occur on SSIP and free ions.
- Special salt effect: SSIP.
- Shenvi: contact ion pair inversion.

Role of the solvent

The solvent as an ionizing medium

$$\log (k / k_0)_{\rm RX} = mY$$

m=1 for *t*-BuCl at rt, *k* is the rate constant for any solvolysis in any solvent and k_0 that for solvolysis in 80% EtOH / water, which is assigned Y=0.

- Several scales exist.
- Method of measurement is not consistent between different solvents: titration, conductance, etc.
- Therefore, high ionizing power does not mean that the resulting carbocation is easily attacked by nucleophiles.

Some strongly ionizing solvents (Y_{OTs}) TFA (4.57) > water (4.0) > 97% HFIP (3.61) > HCOOH (3.04) > TFE (1.80) > CH₃COOH (-0.61)

The solvent as an electrophile

- Electrophilic attachment to the leaving group can assist its departure. (Analogous to silver + halides).
- Addition of small amounts of water increased the rate of alcoholysis of diphenylmethyl chloride, whilst the product remained almost entirely the corresponding ethyl ether.
- This effect is difficult to distinguish from ionizing ability. Hammett *et al. JACS* **1937**, *59*, 2542

The solvent as a nucleophile

- S_N 1: rate-determining ionization step, nucleophilic solvent participation is absent.
- S_N2: faster reaction with more nucleophilic solvent (Y kept constant).

Extended Grunwald-Winstein equation:

 $\log (k / k_0)_{RX} = mY + IN$ N is solvent nucleophilicty, / is sensitivity (in S_N1 =0).

Table IV. Minimum Estimates of Nucleophilic Solvent Assistance $(k_s/k_c)^a$

Tosylates	Solvent										
	CF ₃ CO ₂ H	97 wt % (CF ₃) ₂ CHOH	97 wt % CF ₃ CH ₂ OH	HCO₂H	70 wt % CF ₃ CH ₂ OH	AcOH	50% EtOH	80% EtOH	EtOH		
2-Adamantyl ^b	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.04		
Pinacolyl ^{d.e}	1.0		3.6	2.4 ^f	3.2	8.6	9.5 ^f	12			
Cyclohexyl	1-0	0.62	3.2	5-0	6.6	28	61	104	256-		
Cyclopentyl	1.0			10		105		455	1680		
4-Heptyl	1.0	0.878		3.9		28	46	146			
3-Pentyl	1.0	0.608		6.2		46	103	310	1310		
2-Pentyl	1.0			9.6		88	195	616			
2-Butyle	1.0		6.3	13	22	140	292	979			
2-Propyl ^e	1.0	0.57	15.3	32	57	472	1130	4430	23 500		

Mayr et al showed that $HFIP/H_2O$ mixtures are very strongly ionizing but essentially non-nucleophilic above 90% HFIP.

Schleyer *et al.* JACS **1976**, *98*, 7667 Mayr *et al. J. Phys. Org. Chem.* **2013**, *26*, 59

Conclusions

- Extensively researched topic, many aspects are well understood but there is often confusion.
- CI and Br as neighboring groups decrease the reaction rate (inductive effect) but give high stereospecificity (halonium) in most cases.
- External salts can have significant effect on reaction rates.
- Three main roles of solvent, these are quantifiable: ionizing medium, electrophile, nucleophile.