

Hayden Anderson

Nociception

Hayden Anderson

Cyclooxygenase or Prostaglandin-Endoperoxide Synthase (PTGS):

- Exists as a C₂ symmetric homodimer
- Contains a porphyrin chelated iron atom
- Isoforms are differentially expressed in different tissues

COX-1 or 2

٥

Ovine Cyclooxygenase-1 complexed with endogenous substrate arachadonic acid

MeO

Naproxen

- G-protein coupled receptors (GPCRs) that bind to endogenous ligands known as endorphins (portmanteau of *endogenous morphine*)
- Upon release of the GDP, the $G_{\beta\gamma}$ subunit is released and inhibits calcium channels preventing the release of neurotransmitters into the synaptic cleft
- Further, G_{α} or $G_{\beta\gamma}$ also activate the potassium rectifying ion channel leading to hyperpolarization of the membrane

μ-opioid receptors:

- Primary target of morphine
- Agonism has side effects of respiratory depression, reduced GI motility, physical dependence and often itching

к-opioid receptors:

- Identified through interactions with ketocyclazocine
- Believed to have some role in consciousness as agonists result in feelings of paranoia, hallucinations and dissociation

δ-opioid receptors:

- Discovered in the vas deferens of mice
- Agonism may actually increase respiratory rate in low doses
- Agonists modulate effectiveness of µopioid agonists
- Agonism can result in seizures at high doses

N-opioid receptors:

- Discovered 30 years after the others
- Has received less attention because of its late discovery
- In primates, agonists provided potent analgesia without any of the side effects commonly associated with opioids

Transient Receptor Potential (TRP) Channels

- Gated ion channels with varying degrees of selectivity for Ca²⁺, Na⁺ and K⁺ ions
- Responsible for mediating the transduction of various extracellular stimuli into intracellular responses
- 9 established families which all posses 6 trans-membrane segments
- Little structural or sequence homology between the subfamilies
- Group 1 and group 2 differ in the length of the length of their extracellular segments

TRPC5:

Implicated in mercury poisoning and dental cold sensing

TRPC6:

Implicated in depression and anxiety

PKD1:

Detects and mediates fluid flow through the kidneys

TRPM8:

Responsible for the detection of noxious cold and is activated chemically by menthol

TRPML1:

Transports iron atoms into the cell from lysosomes

TRPM5:

Plays a key role in the sensation of taste and insulin secretion

TPRM3 and **TRPV2**:

Detection of noxious heat > 40 °C and 52 °C, respectively

TRPA1:

ÓН

Responsible for the taste of garlic and transmission of pain signal due to injury or inflamtion

- Non-selective ion channel permeable to Ca²⁺, K⁺, and Na⁺
- Responsible for the detection of noxious heat above
- Also activated by low pH and chemical agents
- Analgesics targeting TRPV1 are typically topical and are aimed at inflammatory and rheumatic pain

Paul Wender

Cynthia Jesudason

Hiroyuki Nakahira

Norikazu Tamura

Resiniferatoxin:

- Produced by Euphorbia resinifera (resin spurge)
- Used in ancient medicine for its analgesic properties
- Has a Scoville rating of 16 billion units
- Has been termed the "molecular scapel"

With Anne Louise Tebbe and Yoshihide Ueno

- Completed the first asymmetric total synthesis of resiniferatoxin
- 44 total steps
- 0.25% yield
- Relied on the Achmatowicz reaction and a zirconocene mediated ring closure

Others:

- 3 other syntheses by Inoue have been published in 2017, 2021, and 2022
- 41, 20 and 27 steps respectively

Masayuki Inoue

Resiniferatoxin Total Synthesis

- Amplify the depolarizations of stimulus transducers
- Begin the process of action potential firing
- Have three different states
- Are grouped according to TTX sensitivity

 $\begin{array}{cccc} \alpha C_0 \leftrightarrow \alpha C_1 \leftrightarrow \alpha C_2 \leftrightarrow \alpha C_3 \leftrightarrow \alpha C_4 \leftrightarrow a 0 \\ & \uparrow & \uparrow \\ & \alpha C_4 \leftrightarrow \alpha 0 I \end{array}$

H. Anderson

Voltage Gated Sodium Channels

2 August 2022

Tettrodotoxin Sensitivity

2 August 2022

Na_v1.8

- Exclusively present in the peripheral nervous system
- Levels drop as organism age
- Slow fast-inactivation leads to persistent current
- Expression increases by about 4-fold after injury

Small-Fiber Neuropathy

 Mutation of the SCN10A gene results in faster recovery of Na_v1.8 and slower fastinactivation

Diabetic Neuropathy

- Methyl glyoxal build up interacts with Na_v1.8
- Raises the membrane threshold for fastinactivation of Na_v1.8

A-803467

PF-01247324

Na_v1.9

- Difficult to study in isolation
- Least conserved among species
- Activation is very hyperpolarized, and inactivation is ultra slow
- Mutations have been implicated in a number of neuropathies

Multiple Sclerosis

 Expression of Na_v1.8 withing the CNS causes misfiring of neurons and contributes to the symptoms of MS

Possum Mice

- A specific mutation of the SCN10A gene causes possum like behavior in mice
- When "scruffed" the mice become temporarily catatonic and "play dead"

Na_v1.3

- In rats, levels peak early in embryonic development and disappears by adulthood
- Re-expressed after nerve injuries
- Glial cell line derived neurotrophic factor (GDNF) and neural growth factor (NGF) prevent neurotrophic pain
- 85% homologous with Na_v1.2

Na_v1.7

- Minimal depolarization required for activation
- Quickly deactivates once open
- Slow closed-state inactivation
- Nav1.7 works to amplify small membrane depolarizations that are the result of stimulus transduction

Small-Fiber Neuropathy

- Mutation of the SCN9A gene results in Na_v1.7 remaining partially open
- Sodium Calcium exchange is then reversed
- Increased cytosolic calcium degrades neurons

Inherited Erythromyalgia

 Gain of function resulting in lowering the activation threshold of Na_v1.7

Paroxysmal Extreme Pain Disorder

- Characterized by episodes of extreme pain
- Slower open-state inactivation and faster reset of Na_v1.7
- Reopening of inactivated channels

Congenital Insensitivity to Pain (CIP)

- Rare, autosomal recessive disorder
- Characterized by an inability to feel pain
- Results from mutation of the SCN9A gene
 - W987X, I767X or S459X

 $\begin{aligned} \alpha C_0 &\leftrightarrow \alpha C_1 \leftrightarrow \alpha C_2 \leftrightarrow \alpha C_3 \leftrightarrow \alpha C_4 \leftrightarrow a 0 \\ & \uparrow & \uparrow \\ & \alpha C_4 \leftrightarrow \alpha 0 I \end{aligned}$

Tetrodotoxin

ĠН

но, ^{но}

2 August 2022

ОН ΌН ÓН

Tetrodotoxin:

- First isolated in 1909 by Yoshizumi Tahara
- Structural elucidation was published in 1964 by Woodward

ЮΗ

- Found in puffer fish (fugu) and in the venom of some octopi (blue ringed octopus)
- Is produced by symbiotic bacteria

Justin Du Bois

Andrew Hinman

Published 5 months later

- Completed the total synthesis of (-)-tetrodotoxin
- 28 total steps
- 2.4% yield
- Showcased the power of selective C-H fuctionalization

Others:

Trauner 2022 (22 steps), Isobe 2004 (39 steps), Sato 2008 (34 steps) Sato 2010 (32 steps), Fukuyama 2017 (31 steps), Fukuyama 2020 (29 steps)

Saxitoxin:

- Isolated in 1957 by E. J.
 Schantz
- Structure published in 1975 by E. J. Schantz
- Produced by algae and bioaccumulates in shellfish

With J. J. Fleming:

- Completed the first and second asymmetric total syntheses of saxitoxin
- 19 and 14 steps, respectively

Saxitoxin (TTX) Synthesis

2 August 2022

Endocannaboid System

Cannabinoid Receptors

2-AG: R= 2-4

 CB_1 -GPCR

Discovery of THC in the 1960s lead to the search for the corresponding receptors

Me

ОН

- CB₁ was discovered first followed by CB₂ in 1993
- GPCRs that have 2 endogenous ligands (endocannabinoids 2-AG and AEA)
- Like OPRs, agonism of the CB₁ and CB₂ receptors inhibits calcium channels and prevents the release of neurotransmitters into the synaptic cleft

Potential Therapeutic Targets

$\mathbf{CB_1}:$

 Side effects: anxiety, panic, euphoria, altered state of consciousness and hallucinations

FAAH (Fatty acid amide hydrolase):

 Inhibition increases levels of endocannabinoids by preventing catabolism

CB₂:

 Theorized to provide the therapeutic effect of cannabinoids without the psychoactive effects

Caryophyllene:

With Rajat B Mitra and Hisashi Uda:

- Completed the first synthesis of caryophyllene and isocaryophyllene
- Isolated from cannabis, cloves and Indian bay leaves

NSAIDs (Part 2)

harpagoside

phenylbutazone

licofelone

nimesulide